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the total syntheses of (2)-LL-C10037b and (+)-manumycin B
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A procedure using Na[PhSeB(OEt)3] is reported for conver-
sion of the type I epoxy ketone manumycins into the type II
b-hydroxyketone variants; using this procedure, (2)-LL-
C10037b and (+)-TMC-1A have been prepared for the first
time; the first synthesis of (+)-manumycin B, which provides
full stereochemical clarification of the natural product, is
also described.

The most recent additions to the manumycin family of
antibiotics are the TMC-1 natural products 1–5 which were
isolated from streptomyces sp. A-230 in 1996 by Kohno and co-
workers and shown to be cytotoxic to a range of tumour cell
lines in vitro.1 This new group of compounds differ from most
of the manumycin family,2–6 e.g. manumycin A 6 and
manumycin B 7,† in that they possess a b-hydroxy ketone in
place of the more common epoxy ketone unit. Sattler, Thiericke
and Zeeck have termed3 the b-hydroxy ketone subset, which
also includes manumycin D 5,1,4 type II manumycins and the
epoxy ketone subset type I manumycins. The same structural
relationship is seen in the less complex anti-tumour natural
products LL-C10037b 8 and LL-C10037a 9.7

Despite their promising biological properties and interesting
structures, synthetic approaches to the TMC-1 antibiotics have
not been reported to date. We have recently developed a
synthetic route to the type I manumycins and utilised it to
prepare (+)-manumycin A5 and other members of the family.2,6

Regioselective reduction of the a,b-epoxy ketone group of the
type I manumycins should produce the type II variants. Thus,
TMC-1A 1 should be available by the reduction of manumycin
B 7.†

In order to establish the validity of this strategy, we first
investigated the conversion of LL-C10037a 9 into LL-C10037b
8 as shown in Scheme 1.

The (+)-enantiomer of LL-C10037a (also known as MT
35214) was prepared using our published procedure.6 The
reagent of choice for the epoxy ketone reduction proved to be
Na[PhSeB(OEt)3],8 generated in situ by NaBH4 reduction of
PhSeSePh. Model studies showed that this reagent displays
exceptional tolerance towards the sensitive functional groups
present within the target molecules. Treatment of (+)-9 with a
freshly prepared solution of Na[PhSeB(OEt)3] in EtOH at 0 °C
resulted in the formation of (2)-LL-C10037b 8, after oxidative
work-up, in an unoptimised but respectable yield of 63%.‡
Compound 8 is extremely sensitive to acid and readily
undergoes dehydration–aromatisation. All spectroscopic data
(IR, UV, NMR) for 8 were entirely consistent with those
published7 for the natural product. In addition, the optical
rotation of (2)-8 corresponded well to the literature data for the
enantiomeric natural product {[a]D234.8 (c 0.9, MeOH); lit.,7
+26.3 (c 0.26, MeOH)} and satisfactory HRMS data were
obtained [Found: MH+, 186.07681. C8H12NO4 requires
186.07663 (1 ppm error)]. This study therefore produced the
first synthesis of LL-C10037b and established the methodology
for an assault on TMC-1 A. Due to the ready availability of the
enantiomerically pure amine (2)-10, prepared utilising the
Wynberg chiral phase transfer technology developed for our
synthesis of (+)-manumycin A,5,6 the (+)-enantiomer of TMC-1
A was targeted (Scheme 2). Scheme 1
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Evans’ oxazolidinone methodology was employed to prepare
(S)-(+)-2-methylpropanal which was converted into acid chlo-
ride 11 using standard methodology.5 Acylation of (2)-10 in
the presence of lithium tert-butoxide2 afforded amide (2)-12 in
an excellent yield of 89%. Direct deprotection of the acetal was
attempted but was unsuccessful due to aromatisation; amide
(2)-12 was therefore converted into the corresponding epoxy
quinone (2)-13 via a three step reduction–deprotection–
oxidation sequence in good overall yield. The enantiomeric
quinone, (+)-13, was obtained by Hara et al. by chromic acid
degradation of manumycin B.9 The NMR data and optical
rotation of quinone (2)-13 corresponded well to those of its
enantiomer {e.g. [a]D216.5 (c 1.1, CHCl3); lit.,9b +16.0 (c 0.2,
CHCl3)}.

Quinone (2)-13 was elaborated via the addition of (E)-
Bu3SnCHNCHLi:10 a mixture of mono- and di-adducts was
obtained from which vinylstannane (+)-14 was isolated in 28%
yield after chromatography. The expected2,5 syn-hydroxy
epoxide structure was confirmed by the diagnostic coupling
constant between H-3 and H-5 (J 2.7 Hz). Stille coupling
between vinylstannane (+)-14 and dienyl bromide 1511 pro-
ceeded efficiently (71%) to give (+)-manumycin B 7 as a bright
yellow solid (mp 96–97 °C; lit.,4 94 °C) which displayed
spectroscopic, chromatographic and polarimetric data entirely
consistent with it being the enantiomer of the natural product.

This is the first synthesis of manumycin B and it confirms that,
as proposed,5 it does indeed have the syn-hydroxy epoxide
configuration illustrated (rather than the corresponding anti-
arrangement described in the original structure elucidation4).

Treatment of (+)-manumycin B 7 with Na[PhSeB(OEt)3]
using the reaction conditions developed in the model studies
resulted in the formation of a polar, light sensitive, dark yellow
solid in an isolated yield of 66%. All spectroscopic and
chromatographic data proved to be consistent with the lit-
erature1 values for the natural antibiotic, TMC-1 A [e.g.
dC(CDCl3, 500 MHz) 191.8 (C-1), 132.0 (C-2), 126.2 (C-3),
73.5 (C-4), 71.8 (C-5), 40.5 (C-6); lit.,1 (CDCl3, 400 MHz)
191.8 (C-1), 132.2 (C-2), 126.0 (C-3), 73.6 (C-4), 71.9 (C-5),
40.6 (C-6)]. The optical rotation of the product {[a]D +58.6 (c
0.5, CHCl3) was consistent with it being the enantiomer of
(2)-TMC-1 A 1 {lit.1 255.0 (c 0.1, CHCl3)}. This study
therefore confirms structure 1 for (2)-TMC-1 A and establishes
the 4AR configuration for the side chain methyl group.

In summary, we have devised a procedure for converting the
type I epoxy ketone manumycins into the type II b-hydroxy
ketone variants. Using this procedure, (2)-LL-C10037b and
(+)-TMC-1A have been prepared for the first time and the
structures of the natural products confirmed. The first synthesis
of (+)-manumycin B is also reported, thereby correcting the
published stereochemical assignment and confirming the syn-
hydroxy epoxide structure. It seems likely that manumycin B is
the biosynthetic proecursor of TMC-1 A, and therefore that the
chemical synthesis described above is biomimetic.
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HRMS/elemental analysis.
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Scheme 2 Reagents and conditions: i, ButOLi, THF (89%); ii, LiEt3BH,
THF, 278 °C (95%); iii, montmorillonite K10, CH2Cl2, room temp. (90%);
iv, PDC, CH2Cl2, room temp (76%); v, (E)-Bu3SnCHNCHLi, THF, 278 °C
(28%); vi, [5% PdCl2(Ph3P)2, DIBAL-H], THF–DMF, room temp. (71%);
vii, Ph2Se2, NaBH4, EtOH, 0 °C (66%).
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